Congrats Cheih-Yu Chang!

Congrats to C. Y. Chang, a number theorist working on transcendence in function field arithmetic (FFA)! He has been awarded a silver medal by the International Congress of Chinese Mathematicians. See this link for more.

He and his collaborators have determined all algebraic relations among various objects such as the Carlitz zeta values, and special values of an analog of the gamma function in FFA, among other things. Nothing like their work has been done yet for number fields. 

Those interested in these things should again see my notes on log-algebraicity (linked just below) where some of these things are discussed briefly with references. I also recommend an internet search for Chang and his collaborators. It’s fairly easy to get a good sense of their work from the introductions to their papers.  


What is Log-algebraicity?

On Tuesday I gave a talk on Anderson’s log-algebraicity at Ohio State University to an audience of mostly grad students and advanced undergrads in a seminar entitled What is…?. I used the extremely powerful transcendence results of M. Papanikolas and others as motivation for where log-algebraicity can take you. There are also applications of Anderson’s results to the new constructions of L. Taelman that we’ve been studying on this blog, but these are not mentioned below.

Notes for the talk are attached are linked RIGHT HERE. Any comments, corrections, hints, tips, or tricks are welcome.